
Stephen Checkoway

Programming Abstractions
Week 8-2: MiniScheme C



What can MiniScheme do at this point?

MiniScheme B has constant numbers


MiniScheme B has pre-bound symbols that are in the init-env



Recall

(parse input) — Parses the input, at this point either a number or a variable, 
and returns a (lit-exp num) or (var-exp sym)

(eval-exp tree e) — Evaluates the parse tree in the environment e, 
returning a value



What does (parse 15) return?

A. 15


B. '(lit-exp 15)


C. It's an error

4



What does (parse 'z) return?

A. '(lit-exp z)


B. '(var-exp z)


C. It's an error

5



What does (eval-exp (var-exp 'z) environment) do?

A. Returns what z is bound to in environment

B. It's an error


C. It looks up with z is bound to, returning the result or causing an error if z 
is not bound


D. Something else

6



What does (eval-exp (lit-exp 108) environment) do?

A. Returns what 108 is bound to in environment

B. It's an error


C. It looks up with 108 is bound to, returning the result or causing an error if 
108 is not bound


D. Returns 108


E. Something else

7



Homeworks 6 and 7

Multiple steps, each adding parts to the 
MiniScheme interpreter


For each new type of expression


‣ Add a new data type


- ift-exp


- let-exp


- etc.


‣ Add constructors, recognizers and 
accessors


‣ Modify parse to produce those


‣ Modify eval-exp to interpret them

EXP → number

| symbol

| ( if EXP EXP EXP )


| ( let ( LET-BINDINGS ) EXP )


| ( letrec ( LET-BINDINGS ) EXP )
| ( lambda ( PARAMS ) EXP )


| ( set! symbol EXP )


| ( begin EXP* )


| ( EXP EXP* )


LET-BINDINGS → LET-BINDING*


LET-BINDING → [ symbol EXP ]


PARAMS → symbol*



Let's add arithmetic and some list procedures
MiniScheme C

Let's add +, -, *, /, car, cdr, cons, etc.


Students find this to be the hardest part of the project


‣ It's the first complex part


‣ It contains some things that make more sense later, once we add lambda 
expressions



Many ways to call procedures

(+ 2 3)

((lambda (x y) (+ x y)) 2 3)

(let ([f +]) (f 2 3))


The parser can't identify primitive procedures like + because symbols like f may 
be bound to primitive procedures


‣ It can't tell because the parser does not have access to the environment


All that the parser can do is recognize a procedure application and parse


‣ the procedure; and


‣ the arguments



Enter lists

So far, the input to MiniScheme A and B has just been a number or a symbol


If the input is a list, then the kind of expression it represents depends on the first 
element


‣ If the first element is 'lambda, it's a lambda expression


‣ If the first element is 'let, it's a let expression


‣ If the first element is 'if, it's an if-then-else expression


‣ etc.


Applications don't have keywords, so any nonempty list for which the first 
element is not one of our supported keywords is an application



Procedure applications
MiniScheme C

EXP → number	 	 parse into lit-exp  

          |  symbol	 	 parse into var-exp  

          | ( EXP EXP* ) parse into app-exp


An app-exp is a new data type that stores


‣ The parse tree for a procedure


‣ A list of parse trees for the arguments


Procedures to implement


‣ (app-exp proc args)


‣ (app-exp? exp)


‣ (app-exp-proc exp) 

‣ (app-exp-args exp)



Recursive implementation
Parsing

Expressions are recursive: EXP → ( EXP EXP* )

When parsing an application expression, you want to parse the sub expressions 
using parse


(define (parse input)  
  (cond [(number? input) (lit-exp input)]  
        [(symbol? input) (var-exp input)]  
        [(list? input)  
         (cond [(empty? input) (error ...)]  
               [else (app-exp (parse (first input))  
                              (...))])]  
        [else (error 'parse "Invalid syntax ~s" input)]))

Parse the 

procedure

Parse the 

arguments



How should you parse the arguments?

Consider input that looks like  

((lambda (x y) x) 2 3) or 
(f 4 5 6)

The procedure part can be parsed with (parse (first input))

How should you parse the arguments?



Evaluating an app-exp

Evaluate the procedure part


Evaluate each of the arguments


If the procedure part evaluates to a primitive procedure, call a procedure you'll 
write that will perform the operation on the arguments


‣ E.g., if the primitive procedure is *, then you'll want to call * on the arguments


The tricky part is what does it mean to evaluate the procedure part?



Evaluating the procedure part of an app-exp

Consider the input '(+ 2 3 4)

The procedure part is '+ which will be parsed as '(var-exp +)


Variable reference expressions are evaluated by looking the symbol up in the 
current environment


Therefore, we need our initial environment to contain a binding for the symbol 
'+ (and all the other primitive procedures we want to support)



prim-proc data type

We can create a new data type prim-proc


‣ (prim-proc symbol)

‣ (prim-proc? value)

‣ (prim-proc-symbol value)

The prim-proc is only used to interpret expressions so where should this data 
type and its procedures be defined?



Adding primitives to our initial environment

(define primitive-operators  
  '(+ - * /))

(define prim-env  
  (env primitive-operators  
       (map prim-proc primitive-operators)  
       empty-env))

(define init-env  
  (env '(x y) '(23 42) prim-env))



Evaluating an app-exp

Recall: app-exp stores the parse tree for the procedure and a list of parse trees 
for the arguments


We need to evaluate all of those; add something like the following to eval-exp  
[(app-exp? tree)  
 (let ([proc (eval-exp (app-exp-proc tree) e)]  
       [args ...])  
   (apply-proc proc args))]

eval-exp's environment 

parameter



Applying a procedure

The apply-proc procedure takes an evaluated procedure and a list of 
evaluated arguments


It can look at the procedure and determine if it's a primitive procedure


‣ If so, it will call apply-primitive-op


‣ If not, it's an error for now; later, we'll add code to deal with non-primitive 
procedure (i.e., normal lambdas)


(define (apply-proc proc args)  
  (cond [(prim-proc? proc)  
         (apply-primitive-op (prim-proc-symbol proc) args)]  
        [else (error 'apply-proc "Bad proc: ~s" proc)]))



Applying primitive operations
(apply-primitive-op op args)

apply-primitive-op takes a symbol (such as '+ or '*) and a list of arguments


You probably want something like


(define (apply-primitive-op op args)  
  (cond [(eq? op '+) (apply + args)]  
        [(eq? op '*) (apply * args)]  
        ...  
        [else (error ...)]))



What is returned by (parse '(* 2 3))?

A. '((prim-proc *) 2 3)

B. '((prim-proc *) (lit-exp 2) (lit-exp 3))

C. '(app-exp (prim-proc *) ((lit-exp 2) (lit-exp 3)))

D. '(var-exp * (lit-exp 2) (lit-exp 3))

E. '(app-exp (var-exp *) ((lit-exp 2) (lit-exp 3)))

22



When evaluating an app-exp, the procedure and each of the arguments are 
evaluated. For example, when evaluating the result of  
(parse '(- 20 5)), there will be three recursive calls to eval-exp, the 
first of which is evaluating (var-exp '-).


What is the result of evaluating (var-exp '-)?

A. #<procedure:-> (i.e., the procedure - itself)

B. '(app-exp -)

C. '(prim-proc -)

D. It's an error because - requires arguments

23



What is the result of (eval-exp (parse '(* 4 5)) init-env)?

A. 20

B. '(app-exp (var-exp *) ((lit-exp 4) (lit-exp 5)))

C. '(prim-proc * 4 5)

D. '(prim-proc (var-exp *) (lit-exp 4) (lit-exp 5))

E. '(app-exp (prim-proc *) 4 5)

24



Why go to all that trouble?

In a later version of MiniScheme, we'll implement lambda


We'll deal with this by adding a line to apply-proc that will apply closures



Adding other primitive procedures

In addition (pardon the pun) to +, -, *, and /, you'll add several other primitive 
procedures


‣ add1

‣ sub1

‣ negate

‣ list

‣ cons

‣ car

‣ cdr

And you'll add a new variable null bound to the empty list



What does (car (list 3 5 2)) parse to?



What does (car (list 3 5 2)) parse to?

'(app-exp (var-exp car)

          ((app-exp (var-exp list)

                    ((lit-exp 3)

                     (lit-exp 5)

                     (lit-exp 2)))))



Adding additional primitive procedures

1. Add the procedure name to primitive-operators


2. Add a corresponding line to the cond in apply-primitive-op

E.g., 
[(eq? op 'car) (car (first args))]  
[(eq? op 'list) args]



What can MiniScheme C do?

Numbers


Pre-defined variables


Procedure calls to built-in procedures


