Programming Abstractions

Week 8-2: MiniScheme C

Stephen Checkoway

What can MiniScheme do at this point?

MiniScheme B has constant numbers

MiniScheme B has pre-bound symbols that are in the init-env

Recall

(parse input) — Parses the input, at this point either a number or a variable,
and returns a (lit-exp num) Or (var-exp sym)

(eval-exp tree e) — Evaluates the parse tree In the environment e,
returning a value

What does (parse 15) return?

A. 15
B. '(lit-exp 15)

C. It's an error

What does (parse 'z) return?

A. '"(lit-exp z)
B. '(var-exp z)

C. It's an error

What does (eval-exp (var-exp 'z) environment) do?

. Returns what z Is bound to In environment

. |It's an error

. It looks up with z is bound to, returning the result or causing an error if z
IS not bound

. Something else

What does (eval-exp (lit-exp 108) environment) do?

. Returns what 108 I1s bound to In environment
. It's an error

. It looks up with 108 is bound to, returning the result or causing an error if
108 is not bound

. Returns 108

. Something else

Homeworks 6 and 7

Multiple steps, each adding parts to the |EXP — number

MiniScheme interpreter symbol
(1f EXP EXP EXP)

For each new type of expression (let (LET-BINDINGS) EXP)
. Add a new data type (letrec (LET-BINDINGS) EXP)

(lambda (PARAMS) EXP)

- 1ft-exp (set! symbol EXP)
- let-exp (begin EXP")
- etc. (EXP EXP")
> Add constructors, recognizers and LET-BINDINGS — LET-BINDING"
A CCESSOrS LET-BINDING — [symbol EXP]

PARAMS — symbol’

> Modify parse to produce those
> Modify eval-exp to interpret them

Let's add arithmetic and some list procedures
MiniScheme C

Let'sadd +, -, *, /, car, cdr, cons, etc.

Students find this to be the hardest part of the project

> |t's the first complex part

> |t contains some things that make more sense later, once we add lambda
expressions

Many ways to call procedures

(+ 2 3)
((lambda (x y) (+ X y)) 2 3)
(let ([£ +]) (£ 2 3))

The parser can't identity primitive procedures like + because symbols like f may
be bound to primitive procedures
> |t can't tell because the parser does not have access to the environment

All that the parser can do is recognize a procedure application and parse
> the procedure; and
> the arguments

Enter lists

So far, the input to MiniScheme A and B has just been a number or a symbol

If the input is a list, then the kind of expression it represents depends on the first
element

> |f the first element is ' lambda, it's a lambda expression

> |f the first element is 'let, it's a let expression

> |f the first element is 'if, it's an if-then-else expression

> elc.

Applications don't have keywords, so any nonempty list for which the first
element is not one of our supported keywords is an application

Procedure applications

MiniScheme C
EXP — number parse Into 1it-exp
| symbol parse into var-exp

An app-exp IS a new data type that stores
> The parse tree for a procedure
> A list of parse trees for the arguments

Procedures to implement

> (app—-exXp proc args)
> (app-exp? exp)

> (app-exXp-proc exp)
> (app-exXp—-args exp)

Recursive implementation

Parsing
Expressions are recursive: EXP — (EXP EXP~*)

When parsing an application expression, you want to parse the sub expressions
using parse

(define (parse 1nput)
(cond [(number? 1input) (lit-exp 1input)]
[(symbol? input) (var-exp 1nput)]
[(list? 1input)
(cond [(empty? 1input) (error ...)]

[else (app-exp (parse (first input))
(...)M

[else (error 'parse "Invalid syntax ~s" input)]))

How should you parse the arguments?

Consider input that looks like
((lambda (x y) x) 2 3) Or
(f 4 5 6)

The procedure part can be parsed with (parse (first input))

How should you parse the arguments?

Evaluating an app-exp

Evaluate the procedure part
Evaluate each of the arguments

If the procedure part evaluates to a primitive procedure, call a procedure you'll
write that will perform the operation on the arguments
» E.qg., If the primitive procedure is *, then you'll want to call * on the arguments

The tricky part is what does it mean to evaluate the procedure part?

Evaluating the procedure part of an app-exp

Consider the input '(+ 2 3 4)
The procedure part is '+ which will be parsed as ' (var-exp +)

Variable reference expressions are evaluated by looking the symbol up in the
current environment

Therefore, we need our initial environment to contain a binding for the symbol
'+ (and all the other primitive procedures we want to support)

prim-proc data type

We can create a new data type prim-proc
> (prim-proc symbol)

> (prim-proc? value)

> (prim-proc-symbol wvalue)

The prim-proc is only used to interpret expressions so where should this data
type and its procedures be defined?

Adding primitives to our Initial environment

(define primitive-operators

(+ = * 7))

(define prim-env
(env primitive-operators
(map prim-proc primitive-operators)
empty-env))

(define 1nit-env
(env '(X y) '(23 42) prim-env))

Evaluating an app-exp

Recall: app-exp stores the parse tree for the procedure and a list of parse trees
for the arguments

We need to evaluate all of those; add something like the following to eval-exp

[(app—-exp? tree)
(let ([proc (eval-exp (app-exp-proc tree) eH-

[args ...])
(apply-proc proc args))]

Applying a procedure

The apply-proc procedure takes an evaluated procedure and a list of
evaluated arguments

It can look at the procedure and determine if it's a primitive procedure

> |f so, it will call apply-primitive-op

> |f not, it's an error for now; later, we'll add code to deal with non-primitive
procedure (i.e., normal lambdas)

(define (apply-proc proc args)
(cond [(prim-proc? proc)
(apply-primitive-op (prim-proc-symbol proc) args)]
[else (error 'apply-proc "Bad proc: ~s" proc)]))

Applying primitive operations
(apply-primitive-op op args)

apply-primitive-op takes a symbol (such as '+ or ' *) and a list of arguments
You probably want something like

(define (apply-primitive-op op args)
(cond [(eg? op '+) (apply + args)]
[(eg? op "*) (apply * args)]

[else (error ...)]))

What is returned by (parse '(* 2 3))?

. ' ((prim-proc *) 2 3)

. ' ((prim-proc *) (lit-exp 2) (lit-exp 3))

. ' (app-exp (prim-proc *) ((lit-exp 2) (lit-exp 3)))
. ' (var-exp * (lit-exp 2) (lit-exp 3))

E. '(app-exp (var-exp *) ((lit-exp 2) (lit-exp 3)))

When evaluating an app-exp, the procedure and each of the arguments are
evaluated. For example, when evaluating the result of

(parse '(- 20 5)), there will be three recursive calls to eval-exp, the
first of which Is evaluating (var-exp '-).

What is the result of evaluating (var-exp '-)?

A. #<procedure:-> (i.e., the procedure - itself)

B. ' (app-exp -)
C. '(prim-proc -)

D. It's an error because - requires arguments

What is the result of (eval-exp (parse '(* 4 5)) init-env)?

. 20

. (app-exp (var-exp *) ((lit-exp 4) (lit-exp 5)))
. ' (prim-proc * 4 5)

. ' (prim-proc (var-exp *) (lit-exp 4) (lit-exp 5))

E. '(app-exp (prim-proc *) 4 5)

Why go to all that trouble?

In a later version of MiniScheme, we'll implement lambda

We'll deal with this by adding a line to apply-proc that will apply closures

Adding other primitive procedures

In addition (pardon the pun) to +, -, *, and /, you'll add several other primitive
procedures

> addl

> subl

> negate

» 1ist

> Ccons

> Ccar

» cdr

And you'll add a new variable null bound to the empty list

What does (car (list 3 5 2)) parse to?

What does (car (list 3 5 2)) parse to?

' (app-exp (var-exp car)
((app-exp (var-exp list)
((lit-exp 3)
(lit-exp 5)
(lit-exp 2)))))

Adding additional primitive procedures

1. Add the procedure name to primitive-operators

2. Add a corresponding line to the cond Iin apply-primitive-op

E.Q.,
[(eq? op 'car) (car (first args))]
[(eg? op 'list) args]

What can MiniScheme C do?

Numbers
Pre-defined variables

Procedure calls to built-in procedures

